Objective

• Use stable isotopes to identify if river is a significant source of water to City spring

• Characterize isotopic signature of groundwater, river water, spring water

• Identify difference or similarities, interpret

General Approach

- 1. Collect samples
- 2. Analyze for routine chemistry and stable isotopes that occur in water (D/H; ¹⁸O/¹⁶O)
- 3. Graph with meteoric water line
- 4. Evaluate/interpret; use in conjunction with hydrogeologic data

Background information

Craig's global meteoric water line, GMWL (1961) for ppt at IAEA global network stations

- All ppt plots approximately along GMWL
- Compared to standard mean ocean water, SMOW, reported permil (0/00)
- Different signature because heavier ¹⁸O condenses out first, lighter ¹⁶O tends to stay in vapor phase longer
- Signatures get lighter along rainout trajectory
- Light isotopic signatures are more negative (lower left corner) and characteristic of colder ppt
- Heavy isotopic signatures are more less negative (upper right corner) and characteristic of warmer ppt
- Local meteoric water lines may have slightly different slope and/or y-intercept; not noticeable on global scale
- Snoqualmie River carries water from higher elevation, and thus higher elev ppt

From http://web.sahra.arizona.edu/programs/isotopes/images/diagram9.gif

Variations in LMWL

http://web.sahra.arizona.edu/programs/isotopes/images/diagram7.gif

Summary of Sampling

Location	November 2014	February 2015	April 2015
Piezometers	x		x
Springs	х	x	x
River	x	x	x
Seeps		х	x

Relevant sub-surface data

Piezometer	Surface Elevation, ft	Depth, ft	Bottom Elevation, ft	Depth to Bedrock, ft	Top Of Bedrock Elev, ft	Adjacent River Elev, ft	Comments
P-1	1,087	45.0	1,042.0	33	1054	~965	Local ppt
P-2	1,011	246.5	764.5	220	791	~965	Dry and till above WLE (831-845)*
P-3	1,017	66.0	951.0	Not encountered	na	~977	silty-clayey gravel from 984 to the well bottom (951 ft)

*Elevation at springs is approximately 688 and 696 ft for S1 and S2, respectively

November sampling

- Variation reflects LMWL
- Nov river reflects cold season
- Piezos reflect warm season
- P2 is lighter than P1 and P3, but still warm season
- Springs a mixture?
- Questions remain

February sampling

- Variation reflects LMWL
- Seeps and springs reflect cold season
- River not as cold as expected. Only local liquid ppt available for the river?
- Springs and seeps are similar
- Suggests that springs are distinct from River
- Questions remain

April sampling

- P2 similar to springs and seeps
- P2, seeps, and springs reflect cold season
- River very light; likely spring snowmelt
- P-3 distinctly heavier than P-2
- Suggests that springs and seeps discharge groundwater recharged from same source as that which recharges P-2
- River recharge to groundwater can't be excluded, nor can it be significant

Relevant hydrogeologic information

- END OF
- Recharge area for P2 is large and includes higher elevation than recharge areas for P1 and P3
- P1 isotopic signature is heaviest (area A), then P3 (area C), then P2 (area B)
- Areas C and A contribute to springs, mostly recharged from local precipitation

- X-section shows high permeability aquifer from P-2 to City springs
- Is elevation of springs controlling groundwater elevation at P2 because there is such a strong connection?

All sampling events

- Piezo variation reflects LMWL shifts with season, like Victoria
- November springs likely a mixture of winter and warm recharge, but can't anything from River)
- Springs and seeps are similar
- Seasonally, seeps and springs are distinct from River
- In conjunction with other hydrogeologic data, suggests that spring discharge is primarily local precipitation and IF there is recharge from the river it is not significant in volume

